Alternating proximal gradient method for sparse nonnegative Tucker decomposition
نویسنده
چکیده
Multi-way data arises inmany applications such as electroencephalography classification, face recognition, text mining and hyperspectral data analysis. Tensor decomposition has been commonly used to find the hidden factors and elicit the intrinsic structures of the multi-way data. This paper considers sparse nonnegative Tucker decomposition (NTD), which is to decompose a given tensor into the product of a core tensor and several factor matrices with sparsity and nonnegativity constraints. An alternating proximal gradient method is applied to solve the problem. The algorithm is then modified to sparse NTD with missing values. Per-iteration cost of the algorithm is estimated scalable about the data size, and global convergence is established under fairly loose conditions. Numerical experiments on both synthetic and real world data demonstrate its superiority over a few state-of-the-art methods for (sparse) NTD from partial and/or full observations. The MATLAB code along with demos are accessible from the author’s homepage.
منابع مشابه
Multifactor sparse feature extraction using Convolutive Nonnegative Tucker Decomposition
Multilinear algebra of the higher-order tensor has been proposed as a potential mathematical framework for machine learning to investigate the relationships among multiple factors underlying the observations. One popular model Nonnegative Tucker Decomposition (NTD) allows us to explore the interactions of different factors with nonnegative constraints. In order to reduce degeneracy problem of t...
متن کاملAlternating proximal gradient method for nonnegative matrix factorization
Nonnegative matrix factorization has been widely applied in face recognition, text mining, as well as spectral analysis. This paper proposes an alternating proximal gradient method for solving this problem. With a uniformly positive lower bound assumption on the iterates, any limit point can be proved to satisfy the first-order optimality conditions. A Nesterov-type extrapolation technique is t...
متن کاملAlgorithms for Sparse Nonnegative Tucker Decompositions
There is a increasing interest in analysis of large-scale multiway data. The concept of multiway data refers to arrays of data with more than two dimensions, that is, taking the form of tensors. To analyze such data, decomposition techniques are widely used. The two most common decompositions for tensors are the Tucker model and the more restricted PARAFAC model. Both models can be viewed as ge...
متن کاملA Two Stage Algorithm for K-Mode Convolutive Nonnegative Tucker Decomposition
Higher order tensor model has been seen as a potential mathematical framework to manipulate the multiple factors underlying the observations. In this paper, we propose a flexible two stage algorithm for K-mode Convolutive Nonnegative Tucker Decomposition (K-CNTD) model by an alternating least square procedure. This model can be seen as a convolutive extension of Nonnegative Tucker Decomposition...
متن کاملExtended HALS algorithm for nonnegative Tucker decomposition and its applications for multiway analysis and classification
Analysis of high dimensional data in modern applications, such as neuroscience, text mining, spectral analysis or chemometrices naturally requires tensor decomposition methods. The Tucker decompositions allow us to extract hidden factors (component matrices) with a different dimension in each mode and investigate interactions among various modes. The Alternating Least Squares (ALS) algorithms h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program. Comput.
دوره 7 شماره
صفحات -
تاریخ انتشار 2015